Страница:
<< 35 36 37 38
39 40 41 >> [Всего задач: 298]
|
|
Сложность: 6+ Классы: 9,10
|
Прямая
l проходит через точку
X с барицентрическими координатами
(
:
:
). Пусть
da,
db,
dc — расстояния от вершин
A,
B,
C до прямой
l с учетом знака (для точек, лежащих по разные
стороны от прямой
l, знаки разные). Докажите, что
da +
db +
dc = 0.
|
|
Сложность: 6+ Классы: 9,10
|
На сторонах треугольника
ABC внешним (внутренним) образом построены
правильные треугольники
ABC1,
AB1C и
A1BC. Докажите, что прямые
AA1,
BB1 и
CC1 пересекаются в одной точке. Найдите трилинейные
координаты этой точки.
Докажите, что для любого натурального
N существует
N точек,
никакие три из которых не лежат на одной прямой и все попарные
расстояния между которыми являются целыми числами.
Прямая
l касается вписанной окружности треугольника
ABC. Пусть
,
,
— расстояния от прямой
l до точек
A,
B,
C с учетом знака (расстояние положительно, если точка и центр
вписанной окружности лежат по одну сторону от прямой
l; в противном случае
расстояние отрциательно). Докажите, что
a +
b +
c = 2
SABC.
Прямая
l касается вневписанной окружности треугольника
ABC, касающейся
стороны
BC. Пусть
,
,
— расстояния от
прямой
l до точек
A,
B,
C с учетом знака (расстояние положительно, если
точка и центр вневписанной окружности лежат по одну сторону от прямой
l; в
противном случае расстояние отрциательно). Докажите, что
-
a +
b +
c = 2
SABC.
Страница:
<< 35 36 37 38
39 40 41 >> [Всего задач: 298]