Страница:
<< 1 2
3 >> [Всего задач: 15]
|
|
Сложность: 3+ Классы: 8,9,10
|
Существует ли треугольник с вершинами в узлах сетки, у которого центры вписанной и описанной окружностей, точки пересечения высот и медиан также лежат в узлах сетки?
|
|
Сложность: 3+ Классы: 7,8,9
|
В остроугольном треугольнике АВС биссектриса AN, высота BH и прямая, перпендикулярная стороне АВ и проходящая через ее середину, пересекаются в одной точке. Найдите угол ВАС.
|
|
Сложность: 7 Классы: 9,10,11
|
Докажите, что при инверсии относительно описанной окружности изодинамические
центры треугольника переходят друг в друга.
|
|
Сложность: 3 Классы: 7,8,9
|
Один из углов треугольника на 120° больше другого.
Докажите, что биссектриса треугольника, проведённая из вершины третьего угла, вдвое длиннее, чем высота, проведённая из той же вершины.
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Назовём треугольник рациональным, если все его углы измеряются рациональным числом градусов. Назовём точку внутри треугольника рациональной, если при соединении её отрезками с вершинами мы получим три рациональных треугольника. Докажите, что внутри любого остроугольного рационального треугольника найдутся как минимум три различные рациональные точки.
Страница:
<< 1 2
3 >> [Всего задач: 15]