Страница:
<< 181 182 183 184
185 186 187 >> [Всего задач: 1111]
|
|
Сложность: 3+ Классы: 6,7,8
|
В таблице 25×25 расставлены целые числа так, что в каждом столбце и в каждой строчке встречаются все числа от 1 до 25. При этом таблица симметрична относительно главной диагонали. Доказать, что на главной диагонали все числа от 1 до 25 встречаются по одному разу.
|
|
Сложность: 3+ Классы: 6,7,8
|
12 команд сыграли турнир по волейболу в один круг. Две команды одержали ровно по 7 побед.
Доказать, что найдутся такие команды А, В, С, что А выиграла у В, В выиграла у С, а С – у А.
|
|
Сложность: 3+ Классы: 6,7,8
|
В прямоугольнике 3×n стоят фишки трёх цветов, по n штук
каждого цвета.
Доказать, что можно переставить фишки в каждой строке так, чтобы в каждом столбце были фишки всех цветов.
|
|
Сложность: 3+ Классы: 8,9,10
|
Дана прямоугольная таблица, в каждой клетке которой написано вещественное число, причем в каждой строке таблицы числа расположены в порядке возрастания. Докажите, что если расположить числа в каждом столбце таблицы в порядке
возрастания, то в строках полученной таблицы числа по-прежнему будут располагаться в порядке возрастания.
Буратино закопал на Поле Чудес два слитка – золотой и серебряный. В те дни, когда погода хорошая, золотой слиток увеличивается на 30%, а серебряный – на 20%. А в те дни, когда погода плохая, золотой слиток уменьшается на 30%, а серебряный – на 20%. Через неделю оказалось, что один из слитков увеличился, а другой уменьшился. Сколько дней была хорошая погода?
Страница:
<< 181 182 183 184
185 186 187 >> [Всего задач: 1111]