Страница:
<< 9 10 11 12 13
14 15 >> [Всего задач: 71]
На антарктической станции n полярников, все разного возраста. С вероятностью p между каждыми двумя полярниками завязываются дружеские отношения, независимо от других симпатий или антипатий. Когда зимовка заканчивается и наступает пора разъезжаться по домам, в каждой паре друзей старший даёт младшему дружеский совет. Найдите математическое ожидание числа тех, кто так и не получил ни одного дружеского совета.
|
|
Сложность: 3+ Классы: 10,11
|
Все коэффициенты многочлена равны 1, 0 или –1.
Докажите, что все его действительные корни (если они существуют) заключены в отрезке [–2, 2].
|
|
Сложность: 4- Классы: 8,9,10
|
Докажите, что число p входит в разложение n! с показателем, не превосходящим 
|
|
Сложность: 4- Классы: 9,10,11
|
Докажите справедливость следующих сравнений:
а) 1 + 2 + 3 + ... + 12 ≡ 1 + 2 + 22 + ... + 211 (mod 13);
б) 1² + 2² + 3² + ... + 12² ≡ 1 + 4 + 42 + ... + 411 (mod 13).
|
|
Сложность: 4 Классы: 10,11
|
Какое наименьшее количество различных целых чисел нужно взять, чтобы среди них можно было выбрать как геометрическую, так и арифметическую прогрессию длины 5?
Страница:
<< 9 10 11 12 13
14 15 >> [Всего задач: 71]