Страница:
<< 8 9 10 11
12 13 14 >> [Всего задач: 71]
|
|
Сложность: 4- Классы: 9,10
|
Дана такая возрастающая бесконечная последовательность натуральных чисел
a1, ...,
an, ..., что каждый её член является либо средним арифметическим, либо средним геометрическим двух соседних. Обязательно ли с некоторого момента эта последовательность становится либо арифметической, либо геометрической прогрессией?
|
|
Сложность: 4 Классы: 9,10,11
|
Из последовательности a, a + d, a + 2d, a + 3d, ..., являющейся бесконечной арифметической прогрессией, где d не равно 0, тогда и только тогда можно выбрать подпоследовательность, являющуюся бесконечной геометрической прогрессией, когда отношение a/d рационально. Докажите это.
Дана невозрастающая последовательность чисел
1/2k = a1 ≥ a2 ≥ ... ≥ an ≥ ... > 0, a1 + a2 + ... + an + ... = 1.
Доказать, что найдутся k чисел, из которых самое маленькое больше половины самого большого.
|
|
Сложность: 4 Классы: 9,10,11
|
В возрастающей бесконечной последовательности натуральных чисел каждое число,
начиная с 2002-го, является делителем суммы всех предыдущих чисел. Докажите, что
в этой последовательности найдётся некоторое число, начиная с которого каждое число равно сумме всех предыдущих.
|
|
Сложность: 4+ Классы: 9,10,11
|
Существует ли такой выпуклый четырехугольник, у которого длины всех сторон и диагоналей в некотором порядке образуют геометрическую прогрессию?
Страница:
<< 8 9 10 11
12 13 14 >> [Всего задач: 71]