ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 34 35 36 37 38 39 40 >> [Всего задач: 232]      



Задача 60614

 [Формат A4]
Темы:   [ Цепные (непрерывные) дроби ]
[ Приближения чисел ]
Сложность: 4
Классы: 10,11

Найдите наименьшее натуральное n, для которого существует такое m, что  

Прислать комментарий     Решение

Задача 60615

 [Числа из электрической розетки]
Темы:   [ Цепные (непрерывные) дроби ]
[ Приближения чисел ]
Сложность: 4
Классы: 10,11

Найдите наименьшее натуральное n, для которого существует такое m, что  

Прислать комментарий     Решение

Задача 60619

 [Теорема Лежандра]
Темы:   [ Цепные (непрерывные) дроби ]
[ Приближения чисел ]
Сложность: 4
Классы: 10,11

Докажите, что если     то p/q – подходящая дробь к числу α.

Прислать комментарий     Решение

Задача 60847

Темы:   [ Теория алгоритмов (прочее) ]
[ Периодические и непериодические дроби ]
[ Рациональные и иррациональные числа ]
[ Периодичность и непериодичность ]
[ Принцип Дирихле (прочее) ]
Сложность: 4
Классы: 8,9,10,11

Коля Васин задумал написать программу, которая дала бы возможность компьютеру печатать одну за другой цифры десятичной записи числа . Докажите, что даже если бы машина не ломалась, то Колина затея все равно бы не удалась, и рано или поздно компьютер напечатал бы неверную цифру.

Прислать комментарий     Решение

Задача 67009

Темы:   [ Десятичная система счисления ]
[ Дроби (прочее) ]
Сложность: 4
Классы: 8,9,10,11

Имеется натуральное 1001-значное число $A$. 1001-значное число $Z$ – то же число $A$, записанное от конца к началу (например, для четырёхзначных чисел это могли быть 7432 и 2347). Известно, что $A > Z$. При каком $A$ частное $A/Z$ будет наименьшим (но строго больше 1)?
Прислать комментарий     Решение


Страница: << 34 35 36 37 38 39 40 >> [Всего задач: 232]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .