Страница:
<< 1 2 3
4 >> [Всего задач: 19]
|
|
Сложность: 3+ Классы: 9,10,11
|
Пусть многочлен с действительными коэффициентами f(x) имеет корень a + ib. Докажите, что число a – ib также будет корнем f(x).
|
|
Сложность: 4- Классы: 9,10,11
|
Найдите сумму степеней порядка s всех корней уравнения zn = 1, где s – целое число.
|
|
Сложность: 4- Классы: 10,11
|
Докажите, что все корни уравнения a(z – b)n = c(z – d )n, где a, b, c, d – заданные комплексные числа, расположены на одной окружности или прямой.
|
|
Сложность: 4 Классы: 9,10,11
|
Докажите, что корни уравнения где a, b, c – попарно различные комплексные числа, лежат внутри треугольника с вершинами в точках a, b, c, или на его сторонах (в случае вырожденного треугольника).
|
|
Сложность: 4 Классы: 10,11
|
Пусть f(x) = (x – a)(x – b)(x – c) – многочлен третьей степени с комплексными корнями a, b, c.
Докажите, что корни производной этого многочлена лежат внутри треугольника с вершинами в точках a, b, c.
Страница:
<< 1 2 3
4 >> [Всего задач: 19]