ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Пусть ABCD – вписанный четырёхугольник, O – точка пересечения диагоналей AC и BD . Пусть окружности, описанные около треугольников ABO и COD , пересекаются в точке K . Точка L такова, что треугольник BLC подобен треугольнику AKD . Докажите, что если четырёхугольник BLCK выпуклый, то он он является описанным. ![]() ![]() Пусть r0 – радиус вневписанной сферы тетраэдра, касающейся грани площади S0 , а S1 , S2 и S3 – площади остальных граней тетраэдра. Докажите, что объём тетраэдра можно вычислить по формуле V= ![]() ![]() |
Страница: << 39 40 41 42 43 44 45 >> [Всего задач: 298]
Известно, что в выпуклом n-угольнике (n > 3) никакие три диагонали не проходят через одну точку.
На двух параллельных прямых a и b выбраны точки A1, A2, ..., Am и B1, B2, ..., Bn
соответственно и проведены все отрезки вида AiBj
На плоскости синим и красным цветом окрашено несколько точек так, что никакие три точки одного цвета не лежат на одной прямой (точек каждого цвета не меньше трёх). Докажите, что какие-то три точки одного цвета образуют треугольник, на трёх сторонах которого лежит не более двух точек другого цвета.
На окружности радиуса 1 отмечено 100 точек.
Страница: << 39 40 41 42 43 44 45 >> [Всего задач: 298] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |