ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 129]      



Задача 67036

Темы:   [ Задачи на движение ]
[ Монотонность и ограниченность ]
Сложность: 3
Классы: 8,9,10,11

В равнобедренной трапеции проведена диагональ. По контуру каждого из получившихся двух треугольников ползёт свой жук. Скорости движения жуков постоянны и одинаковы. Жуки не меняют направления обхода своих контуров, и по диагонали трапеции они ползут в разных направлениях. Докажите, что при любых начальных положениях жуков они когда-нибудь встретятся.
Прислать комментарий     Решение


Задача 98260

Темы:   [ Принцип Дирихле (углы и длины) ]
[ Методы математического анализа (прочее) ]
Сложность: 3
Классы: 8,9

На отрезке  [0, 1]  числовой оси расположены четыре точки: a, b, c, d.
Докажите, что найдётcя такая точка x, принадлежащая  [0, 1],  что  

 
Прислать комментарий     Решение

Задача 116615

Темы:   [ Иррациональные уравнения ]
[ Монотонность и ограниченность ]
Сложность: 3
Классы: 9,10,11

Автор: Фольклор

Решите уравнение:  .

Прислать комментарий     Решение

Задача 35561

Темы:   [ Отношение порядка ]
[ Соображения непрерывности ]
[ Перестановки и подстановки (прочее) ]
Сложность: 3+
Классы: 9,10

Некто расставил в произвольном порядке 10-томное собрание сочинений. Назовём беспорядком пару томов, для которых том с большим номером стоит левее. Для данной расстановки томов посчитано число S всех беспорядков. Какие значения может принимать S?

Прислать комментарий     Решение

Задача 65406

Темы:   [ Сумма длин диагоналей четырехугольника ]
[ Соображения непрерывности ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 9,10,11

Периметр выпуклого четырёхугольника равен 2004, одна из диагоналей равна 1001. Может ли вторая диагональ быть равна  а) 1;  б) 2;  в) 1001?

Прислать комментарий     Решение

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 129]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .