Страница:
<< 1 2
3 4 5 6 7 >> [Всего задач: 129]
|
|
Сложность: 3+ Классы: 10,11
|
Решите уравнение 2
x+3
x=5
x.
|
|
Сложность: 4- Классы: 10,11
|
Известно, что среди членов некоторой арифметической прогрессии a1, a2, a3, a4, ... есть числа
Докажите,что эта прогрессия состоит из целых чисел.
|
|
Сложность: 4 Классы: 7,8,9,10,11
|
В ряд стоят $9$ вертикальных столбиков. В некоторых местах между соседними столбиками вставлены горизонтальные палочки, никакие две из которых не находятся на одной высоте. Жук ползёт снизу вверх; когда он встречает палочку, он переползает по ней на соседний столбик и продолжает ползти вверх. Известно, что если жук начинает внизу первого столбика, то он закончит свой путь на девятом столбике. Всегда ли можно убрать одну из палочек так, чтобы жук в конце пути оказался наверху пятого столбика?
Например, если палочки расположены как на рисунке, то жук будет ползти по сплошной линии. Если убрать третью палочку на пути жука, то он поползёт по пунктирной линии.
|
|
Сложность: 4+ Классы: 9,10,11
|
По кругу стоят n мальчиков и n девочек. Назовём пару из мальчика и девочки хорошей, если на одной из дуг между ними стоит поровну мальчиков и девочек (в частности, стоящие рядом мальчик и девочка образуют хорошую пару). Оказалось, что есть девочка, которая участвует ровно в 10 хороших парах. Докажите, что есть и мальчик, который участвует ровно в 10 хороших парах.
|
|
Сложность: 4+ Классы: 10,11
|
Из двух треугольных пирамид с общим основанием одна лежит внутри другой.
Может ли быть сумма ребер внутренней пирамиды больше суммы ребер внешней?
Страница:
<< 1 2
3 4 5 6 7 >> [Всего задач: 129]