Страница:
<< 53 54 55 56
57 58 59 >> [Всего задач: 404]
|
|
Сложность: 3+ Классы: 10,11
|
В выпуклом четырёхугольнике ABCD диагонали перпендикулярны. На сторонах AD и CD отмечены соответственно точки M и N так, что углы ABN и CBM прямые. Докажите, что прямые AC и MN параллельны.
|
|
Сложность: 3+ Классы: 10,11
|
В параллелограмме АВСD точка Е – середина стороны AD, точка F – основание перпендикуляра, опущенного из вершины В на прямую СЕ.
Найдите площадь треугольника ABF, если АВ = а, ∠ВАF = α.
В треугольник ABC со сторонами AB = 6, BC = 5, AC = 7 вписан квадрат, две вершины которого лежат на стороне AC, одна на стороне AB и одна на стороне BC. Через середину D стороны AC и центр квадрата проведена прямая, которая пересекается с высотой BH в точке M. Найдите площадь треугольника DMC.
В треугольнике ABC проведена медиана AM.
Может ли радиус вписанной окружности треугольника ABM быть ровно в два раза больше радиуса вписанной окружности треугольника ACM?
В прямоугольном треугольнике ABC из вершины прямого угла C проведена медиана CD. Найдите расстояние между центрами окружностей, вписанных в треугольники ACD и BCD, если BC = 4, а радиус описанной окружности треугольника ABC, равен 5/2.
Страница:
<< 53 54 55 56
57 58 59 >> [Всего задач: 404]