Страница:
<< 9 10 11 12 13 14
15 >> [Всего задач: 72]
|
|
Сложность: 4+ Классы: 9,10,11
|
Из точки A к окружности ω проведена касательная AD и произвольная секущая, пересекающая окружность в точках B и C (B лежит между точками A и C). Докажите, что окружность, проходящая через точки C и D и касающаяся прямой BD, проходит через фиксированную точку (отличную от D).
|
|
Сложность: 4+ Классы: 10,11
|
Даны окружность и лежащий внутри неё эллипс с фокусом C.
Найдите геометрическое место центров описанных окружностей треугольников ABC, где AB – хорда окружности, касающаяся эллипса.
|
|
Сложность: 5- Классы: 10,11
|
В четырёхугольнике ABCD вписанная окружность ω касается сторон BC и DA в точках E и F соответственно. Оказалось, что прямые AB, FE и CD пересекаются в одной точке S. Описанные окружности Ω и Ω1 треугольников AED и BFC, вторично пересекают окружность ω в точках E1 и F1. Докажите, что прямые EF и E1F1 параллельны.
|
|
Сложность: 4 Классы: 9,10,11
|
Четырёхугольник ABCD вписан в окружность Ω с центром O, причём O не лежит на диагоналях четырёхугольника. Описанная окружность Ω1 треугольника AOC проходит через середину диагонали BD. Докажите, что описанная окружность Ω2 треугольника BOD проходит через середину диагонали AC.
|
|
Сложность: 4+ Классы: 9,10
|
Постройте треугольник по вершине A, центру O описанной окружности и точке Лемуана L.
Страница:
<< 9 10 11 12 13 14
15 >> [Всего задач: 72]