ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 36 37 38 39 40 41 42 >> [Всего задач: 501]      



Задача 66305

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Трапеции (прочее) ]
[ Вписанные и описанные окружности ]
[ Вписанный угол равен половине центрального ]
[ Гомотетия помогает решить задачу ]
[ Замечательное свойство трапеции ]
Сложность: 4
Классы: 8,9

Автор: Tran Quang Hung

Вокруг квадрата ABCD описана окружность. Точка P лежит на дуге CD этой окружности, не содержащей других вершин квадрата. Прямые PA, PB пересекают диагонали BD, AC соответственно в точках K, L. Точки M, N – проекции K, L соответственно на CD, а Q – точка пересечения прямых KN и ML. Докажите, что прямая PQ делит отрезок AB пополам.

Прислать комментарий     Решение

Задача 67232

Темы:   [ Ромбы. Признаки и свойства ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4
Классы: 8,9,10,11

Высоты параллелограмма больше 1. Обязательно ли в него можно поместить единичный квадрат?
Прислать комментарий     Решение


Задача 78531

Темы:   [ Ромбы. Признаки и свойства ]
[ Сумма внутренних и внешних углов многоугольника ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 4
Классы: 7,8,9

Через противоположные вершины A и C четырёхугольника ABCD проведена окружность, пересекающая стороны AB, BC, CD и AD соответственно в точках M, N, P и Q. Известно, что BM = BN = DP = DQ = R , где R — радиус данной окружности. Доказать, что в таком случае сумма углов B и D данного четырёхугольника равна 120o.
Прислать комментарий     Решение


Задача 102698

Темы:   [ Ромбы. Признаки и свойства ]
[ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
Сложность: 4
Классы: 8,9

В ромбе ABCD через точки B, C, D проведена окружность с центром в точке O1, а через точки A, B, C проведена окружность с центром в точке O2. Известно, что отношение длины отрезка O1O2 к длине отрезка BO2 равно 3. Найдите величину угла ABO2.

Прислать комментарий     Решение


Задача 108176

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Свойства биссектрис, конкуррентность ]
[ Покрытия ]
[ Неравенства для элементов треугольника (прочее) ]
Сложность: 4
Классы: 7,8,9

Докажите, что остроугольный треугольник полностью покрывается тремя квадратами, построенными на его сторонах как на диагоналях.
Прислать комментарий     Решение


Страница: << 36 37 38 39 40 41 42 >> [Всего задач: 501]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .