ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Внутри квадрата A1A2A3A4 лежит выпуклый четырёхугольник A5A6A7A8. Внутри A5A6A7A8 выбрана точка A9. Никакие три из этих девяти точек не лежат на одной прямой. Докажите, что можно выбрать из них 5 точек, расположенных в вершинах выпуклого пятиугольника.

Вниз   Решение


Автор: Назаров Ф.

Четырёхугольник ABCD вписанный, M – точка пересечения прямых AB и CD, N – точка пересечения прямых BC и AD. Известно, что  BM = DN.
Докажите, что  CM = CN.

Вверх   Решение

Задачи

Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 93]      



Задача 57199

Тема:   [ Метод ГМТ ]
Сложность: 4
Классы: 8,9

Даны точка A и окружность S. Проведите через точку A прямую так, чтобы хорда, высекаемая окружностью S на этой прямой, имела данную длину d.
Прислать комментарий     Решение


Задача 57200

Темы:   [ Метод ГМТ ]
[ Признаки и свойства параллелограмма ]
[ Вспомогательные подобные треугольники ]
Сложность: 4
Классы: 8,9

Дан четырёхугольник ABCD. Впишите в него параллелограмм с заданными направлениями сторон.

Прислать комментарий     Решение

Задача 54603

Темы:   [ Метод ГМТ ]
[ Пересекающиеся окружности ]
Сложность: 4+
Классы: 8,9

С помощью циркуля и линейки около данного треугольника опишите треугольник, равный другому данному треугольнику.

Прислать комментарий     Решение


Задача 54604

Темы:   [ Метод ГМТ ]
[ Пересекающиеся окружности ]
Сложность: 4+
Классы: 8,9

С помощью циркуля и линейки в данный треугольник впишите треугольник, равный другому данному треугольнику.

Прислать комментарий     Решение


Задача 78554

Темы:   [ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Метод ГМТ ]
Сложность: 2+
Классы: 9,10

Внутри данного треугольника ABC найти такую точку O, чтобы площади треугольников AOB, BOC, COA относились как 1 : 2 : 3.
Прислать комментарий     Решение


Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 93]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .