ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

На столе стоят восемь стаканов с водой. Разрешается взять любые два стакана и уравнять в них количества воды, перелив часть воды из одного стакана в другой. Докажите, что с помощью таких операций можно добиться того, чтобы во всех стаканах было поровну воды.

Вниз   Решение


Трое сумасшедших маляров принялись красить пол каждый в свой цвет. Один успел закрасить красным 75% пола, другой зелёным – 70%, третий синим – 65%. Какая часть пола заведомо закрашена всеми тремя красками?

ВверхВниз   Решение


На доске было написано уравнение вида  x² + px + q = 0  с целыми ненулевыми коэффициентами p и q. Временами к доске подходили разные школьники, стирали уравнение, после чего составляли и записывали уравнение такого же вида, корнями которого являются коэффициенты стёртого уравнения. В какой-то момент составленное уравнение совпало с тем, что было написано на доске изначально. Какое уравнение изначально было написано на доске?

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 499]      



Задача 87981

Тема:   [ Десятичная система счисления ]
Сложность: 2-
Классы: 5,6,7

Попробуйте найти все натуральные числа, которые больше своей последней цифры в 5 раз.
Прислать комментарий     Решение


Задача 87992

Темы:   [ Десятичная система счисления ]
[ Перебор случаев ]
Сложность: 2-
Классы: 5,6,7

Одно трехзначное число состоит из различных цифр, следующих в порядке возрастания, а в его названии все слова начинаются с одной и той же буквы. Другое трехзначное число, наоборот, состоит из одинаковых цифр, но в его названии все слова начинаются с разных букв. Какие это числа?
Прислать комментарий     Решение


Задача 88081

Темы:   [ Десятичная система счисления ]
[ Перебор случаев ]
Сложность: 2-
Классы: 5,6,7

Напишите в строчку первые 10 простых чисел. Как вычеркнуть 6 цифр, чтобы получилось наибольшее возможное число?
Прислать комментарий     Решение


Задача 88142

Тема:   [ Десятичная система счисления ]
Сложность: 2-
Классы: 5,6,7

Найдите наибольшее шестизначное число, у которого каждая цифра, начиная с третьей, равна сумме двух предыдущих цифр.
Прислать комментарий     Решение


Задача 88143

Тема:   [ Десятичная система счисления ]
Сложность: 2-
Классы: 5,6,7

Найдите наибольшее число, у которого каждая цифра, начиная с третьей, равна сумме двух предыдущих цифр.
Прислать комментарий     Решение


Страница: 1 2 3 4 5 6 7 >> [Всего задач: 499]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .