Страница:
<< 39 40 41 42
43 44 45 >> [Всего задач: 328]
|
|
Сложность: 4- Классы: 8,9,10,11
|
У каждого целого числа от n + 1 до 2n включительно (n – натуральное) возьмём наибольший нечётный делитель и сложим все эти делители.
Докажите, что получится n².
|
|
Сложность: 4- Классы: 8,9,10
|
На бесконечной шахматной доске стоит конь. Найти все клетки, куда он может
попасть за 2n ходов.
|
|
Сложность: 4- Классы: 9,10,11
|
С натуральным числом K производится следующая операция: оно представляется в виде произведения простых сомножителей K = p1p2...pn; затем вычисляется сумма p1 + p2 + ... + pn + 1. С полученным числом производится то же самое, и т.д.
Доказать, что образующаяся последовательность, начиная с некоторого номера, будет периодической.
|
|
Сложность: 4- Классы: 7,8,9,10
|
На некотором поле шахматной доски стоит фишка. Двое по очереди переставляют
фишку, при этом на каждом ходу, начиная со второго, расстояние, на которое она
перемещается, должно быть строго больше, чем на предыдущем ходу. Проигравшим
считается тот, кто не может сделать очередной ход. Кто выигрывает при правильной игре? (Фишка ставится всегда точно в центр каждого поля.)
|
|
Сложность: 4- Классы: 8,9,10
|
Рассмотрим все возможные наборы чисел из множества {1, 2, 3, ..., n}, не содержащие двух соседних чисел.
Докажите, что сумма квадратов произведений чисел в этих наборах равна (n + 1)! – 1.
Страница:
<< 39 40 41 42
43 44 45 >> [Всего задач: 328]