Страница:
<< 95 96 97 98
99 100 101 >> [Всего задач: 694]
|
|
Сложность: 4 Классы: 9,10,11
|
Из последовательности a, a + d, a + 2d, a + 3d, ..., являющейся бесконечной арифметической прогрессией, где d не равно 0, тогда и только тогда можно выбрать подпоследовательность, являющуюся бесконечной геометрической прогрессией, когда отношение a/d рационально. Докажите это.
|
|
Сложность: 4 Классы: 10,11
|
Имеется несколько чисел, каждое из которых меньше чем 1951. Общее наименьшее
кратное любых двух из них больше чем 1951.
Доказать, что сумма обратных величин этих чисел меньше 2.
|
|
Сложность: 4 Классы: 8,9,10
|
p простых чисел a1, a2, ..., ap образуют возрастающую арифметическую прогрессию и a1 > p.
Доказать, что если p – простое число, то разность прогрессии делится на p.
|
|
Сложность: 4 Классы: 10,11
|
Взяли три числа
x,
y,
z. Вычислили абсолютные величины попарных разностей
x1 = |
x -
y|,
y1 = |
y -
z|,
z1 = |
z -
x|. Тем же способом по числам
x1,
y1,
z1 построили числа
x2,
y2,
z2 и т.д. Оказалось, что при некотором
n xn =
x,
yn =
y,
zn =
z. Зная, что
x = 1, найти
y и
z.
Дана невозрастающая последовательность чисел
1/2k = a1 ≥ a2 ≥ ... ≥ an ≥ ... > 0, a1 + a2 + ... + an + ... = 1.
Доказать, что найдутся k чисел, из которых самое маленькое больше половины самого большого.
Страница:
<< 95 96 97 98
99 100 101 >> [Всего задач: 694]