Страница:
<< 114 115 116 117
118 119 120 >> [Всего задач: 1111]
64 неотрицательных числа, сумма которых равна 1956, расположены в форме
квадратной таблицы по восемь чисел в каждой строке и в каждом столбце. Сумма
чисел, стоящих на двух диагоналях, равна 112. Числа, расположенные симметрично относительно любой диагонали, равны. Докажите, что сумма чисел в любой строке меньше 518.
Дана таблица 4×4 клетки, в некоторых клетках которой поставлено по
звёздочке. Показать, что можно так расставить семь звёздочек, что при вычёркивании любых двух строк и любых двух столбцов этой таблицы в оставшихся клетках всегда была бы хотя бы одна звёздочка. Доказать, что если звёздочек меньше, чем семь, то всегда можно так вычеркнуть две строки и два столбца, что все оставшиеся клетки будут пустыми.
|
|
Сложность: 4- Классы: 10,11
|
Школьник в течение учебного года должен решать ровно по 25 задач за каждые
идущие подряд 7 дней. Время, необходимое на решение одной задачи (любой), не
меняется в течение дня, но меняется в течение учебного года по известному школьнику закону и всегда меньше 45 минут. Школьник хочет затратить на решение
задач в общей сложности наименьшее время. Доказать, что для этого он может
выбрать некоторый день недели и в этот день (каждую неделю) решать по 25 задач.
|
|
Сложность: 4- Классы: 8,9,10,11
|
В каждой клетке квадратной таблицы m×m клеток стоит либо натуральное число, либо нуль. При этом, если на пересечении строки и столбца стоит нуль, то сумма чисел в "кресте", состоящем из этой строки и этого столбца, не меньше m. Докажите, что сумма всех чисел в таблице не меньше чем ½ m².
|
|
Сложность: 4- Классы: 9,10
|
Во всех клетках таблицы 100×100 стоят плюсы. Разрешается одновременно
менять знаки во всех клетках одной строки или же во всех клетках одного столбца. Можно ли, пользуясь только этими операциями, получить ровно 1970 минусов?
Страница:
<< 114 115 116 117
118 119 120 >> [Всего задач: 1111]