ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 33 34 35 36 37 38 39 >> [Всего задач: 290]      



Задача 53714

Темы:   [ Углы, опирающиеся на равные дуги и равные хорды ]
[ Правильный (равносторонний) треугольник ]
Сложность: 4-
Классы: 8,9

Через точку O, взятую на стороне правильного треугольника ABC, проведены прямые, параллельные сторонам AB и AC, и пересекающие стороны AC и AB в точках K и L соответственно. Окружность, проходящая через точки O, K и L пересекает стороны AC и AB соответственно в точках Q и P, отличных от K и L. Докажите, что треугольник OPQ — равносторонний.

Прислать комментарий     Решение


Задача 64483

Темы:   [ Правильный тетраэдр ]
[ Правильный (равносторонний) треугольник ]
[ Теорема косинусов ]
[ Гомотетия помогает решить задачу ]
Сложность: 4-
Классы: 10,11

На каждой грани правильного тетраэдра с ребром 1 во внешнюю сторону построены правильные тетраэдры. Четыре их вершины, не принадлежащие исходному тетраэдру, образовали новый тетраэдр. Найдите его рёбра.

Прислать комментарий     Решение

Задача 66750

Темы:   [ Вписанный угол равен половине центрального ]
[ Правильный (равносторонний) треугольник ]
[ Равные треугольники. Признаки равенства (прочее) ]
[ Теорема синусов ]
Сложность: 4-
Классы: 8,9,10,11

Внутри равнобедренного треугольника $ABC$ отмечена точка $K$ так, что  $CK = AB = BC$  и  ∠ KAC = 30°.  Найдите угол $AKB$.

Прислать комментарий     Решение

Задача 78625

Темы:   [ Метрические соотношения (прочее) ]
[ Правильный (равносторонний) треугольник ]
[ Прямоугольные треугольники (прочее) ]
Сложность: 4-
Классы: 10,11

На каждой стороне треугольника ABC построено по квадрату во внешнюю сторону (пифагоровы штаны). Оказалось, что внешние вершины всех квадратов лежат на одной окружности. Доказать, что треугольник ABC — равнобедренный.
Прислать комментарий     Решение


Задача 98148

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Правильный (равносторонний) треугольник ]
[ Четыре точки, лежащие на одной окружности ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
Сложность: 4-
Классы: 8,9

В квадрат вписано 1993 различных правильных треугольника (треугольник вписан, если три его вершины лежат на сторонах квадрата).
Докажите, что внутри квадрата можно указать точку, лежащую на границе не менее чем 499 из этих треугольников.

Прислать комментарий     Решение

Страница: << 33 34 35 36 37 38 39 >> [Всего задач: 290]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .