ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Пусть натуральные числа $a$ и $b$ взаимно просты. Докажите, что для того, чтобы уравнение  $ax + by = c$  имело ровно $n$ целых положительных решений, значение $c$ должно находиться в пределах  $(n - 1) \cdot ab + a + b \leqslant c \leqslant (n + 1) \cdot ab.$

   Решение

Задачи

Страница: << 63 64 65 66 67 68 69 >> [Всего задач: 448]      



Задача 87060

Темы:   [ Достроение тетраэдра до параллелепипеда ]
[ Теорема косинусов ]
Сложность: 4
Классы: 8,9

Отрезок AB ( AB = 1 ), являющийся хордой сферы радиуса 1, расположен под углом 60o к диаметру CD этой сферы. Расстояние от конца C диаметра до ближайшего к нему конца A хорды AB равно . Найдите BD .
Прислать комментарий     Решение


Задача 87375

Темы:   [ Сфера, касающаяся ребер тетраэдра ]
[ Теорема косинусов ]
Сложность: 4
Классы: 10,11

Сфера касается рёбер AS , BS , BC и AC треугольной пирамиды SABC в точках K , L , M и N соответственно. Найдите отрезок KL , если MN = 7 , NK = 5 , LN = 2 и KL = LM .
Прислать комментарий     Решение


Задача 87376

Темы:   [ Сфера, касающаяся ребер тетраэдра ]
[ Теорема косинусов ]
Сложность: 4
Классы: 10,11

Сфера касается рёбер AS , CS , AB и BC треугольной пирамиды SABC в точках P , Q , R и T соответственно. Найдите отрезок QT , если PQ = PR = 8 , PT = и QT на 7 больше, чем RT .
Прислать комментарий     Решение


Задача 87377

Темы:   [ Сфера, касающаяся ребер тетраэдра ]
[ Теорема косинусов ]
Сложность: 4
Классы: 10,11

Сфера касается рёбер BS , CS , CA и AB треугольной пирамиды SABC в точках D , E , G и H соответственно. Найдите отрезок EH , если DE = EG = 8 , GH = 6 , HD = 4 .
Прислать комментарий     Решение


Задача 87378

Темы:   [ Сфера, касающаяся ребер или сторон пирамиды ]
[ Теорема косинусов ]
Сложность: 4
Классы: 10,11

Сфера касается рёбер AS , CS , AB и BC треугольной пирамиды SABC в точках D , E , F и G соответственно. Найдите отрезок FG , если DE = DF = 8 , DG = 3 и FG на 2 больше, чем GE .
Прислать комментарий     Решение


Страница: << 63 64 65 66 67 68 69 >> [Всего задач: 448]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .