ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 353]      



Задача 30272

Тема:   [ Математическая логика (прочее) ]
Сложность: 2
Классы: 5,6,7

По дороге цепочкой ползут три черепахи. "За мной ползут две черепахи" - говорит первая. "За мной ползет одна черепаха, и передо мной ползет одна черепаха" - говорит вторая. "Передо мной ползут две черепахи, и за мной ползет одна черепаха" - говорит третья. Как такое может быть?

Прислать комментарий     Решение

Задача 67326

Тема:   [ Математическая логика (прочее) ]
Сложность: 2
Классы: 6,7

Среди своих старых рисунков Катя нашла несколько картинок с разноцветным зонтиком. Катя помнит, что рисовала один и тот же зонтик (вид сверху), только повёрнутый по-разному. К сожалению, от времени краска частично выцвела.

Помогите Кате восстановить, в каком порядке располагались цвета на зонтике, если идти от 1 (розового) по часовой стрелке.
Прислать комментарий     Решение


Задача 67327

Тема:   [ Ребусы ]
Сложность: 2
Классы: 6,7

В ребусе $\text{ТУР}+\text{ТУР}+\text{ТУР}+...+\text{ТУР}=\text{ТУРЛОМ}$ одинаковые буквы заменяют одинаковые цифры, разные буквы заменяют разные цифры. Часть одинаковых слагаемых мы заменили многоточием. Сколько всего может быть ТУРов, чтобы ребус имел решение? Найдите наименьшее и наибольшее количества.
Прислать комментарий     Решение


Задача 67328

Тема:   [ Математическая логика (прочее) ]
Сложность: 2
Классы: 6,7

В спорткомплексе 99 шкафчиков с номерами от 01 до 99. На браслете с ключом цифры написаны по образцу на рисунке:

По браслету непонятно, где низ, а где верх, и поэтому иногда нельзя однозначно определить номер своего шкафчика (например, браслеты, соответствующие номерам 10 и 01, выглядят одинаково). Мише выдали один из ключей. В скольких случаях из 99 он, посмотрев на браслет, не сможет однозначно определить номер своего шкафчика?
Прислать комментарий     Решение


Задача 79636

Тема:   [ Парадоксы ]
Сложность: 2
Классы: 5,6,7

Петя написал на доске верное равенство: 35+10-41=42+12-50, а   затем вычел из обеих частей по 4:  35+10-45=42+12-54. Он заметил, что в левой части равенства все числа делятся на 5, а в правой - на 6.  Тогда он вынес в левой части 5 за скобки, а в правой - 6 и получил 5(7+2-9)=6(7+2-9). Сократив обе части на общий множитель, Петя получил, что 5=6. Где он ошибся?
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 353]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .