ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Автор: Кноп К.А.

Параллелограмм $ABCD$ разделён диагональю $BD$ на два равных треугольника. В треугольник $ABD$ вписан правильный шестиугольник так, что две его соседние стороны лежат на $AB$ и $AD$, а одна из вершин – на $BD$. В треугольник $CBD$ вписан правильный шестиугольник так, что две его соседние вершины лежат на $CB$ и $CD$, а одна из сторон – на $BD$. Какой из шестиугольников больше?

Вниз   Решение


Даны два числа. Найти их наибольший общий делитель.

Входные данные
Вводятся два натуральных числа, не превышающих 30000.

Выходные данные
Выведите НОД введенных чисел

Пример входного файла
9 12

Пример выходного файла
6

Вверх   Решение

Задачи

Страница: 1 2 3 4 >> [Всего задач: 19]      



Задача 57778

Тема:   [ Барицентрические координаты ]
Сложность: 3
Классы: 9,10

Пусть задан треугольник A1A2A3. Докажите, что:
а) любая точка X имеет некоторые барицентрические координаты относительно него;
б) при условии m1 + m2 + m3 = 1 барицентрические координаты точки X определены однозначно.
Прислать комментарий     Решение


Задача 57779

Тема:   [ Барицентрические координаты ]
Сложность: 3
Классы: 9,10

Докажите, что барицентрические координаты точки X, лежащей внутри треугольника ABC, равны (SBCX : SCAX : SABX).
Прислать комментарий     Решение


Задача 57780

Тема:   [ Барицентрические координаты ]
Сложность: 3
Классы: 9,10

Точка X лежит внутри треугольника ABC. Прямые, проходящие через точку X параллельно AC и BC, пересекают сторону AB в точках K и L соответственно. Докажите, что барицентрические координаты точки X равны (BL : AK : LK).
Прислать комментарий     Решение


Задача 57781

Тема:   [ Барицентрические координаты ]
Сложность: 4
Классы: 9,10

Найдите барицентрические координаты а) центра описанной окружности; б) центра вписанной окружности; в) ортоцентра треугольника.
Прислать комментарий     Решение


Задача 57782

Тема:   [ Барицентрические координаты ]
Сложность: 4
Классы: 9,10

Относительно треугольника ABC точка X имеет абсолютные барицентрические координаты ($ \alpha$ : $ \beta$ : $ \gamma$). Докажите, что $ \overrightarrow{XA}$ = $ \beta$$ \overrightarrow{BA}$ + $ \gamma$$ \overrightarrow{CA}$.
Прислать комментарий     Решение


Страница: 1 2 3 4 >> [Всего задач: 19]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .