Страница: 1
2 3 4 5 6 >> [Всего задач: 30]
|
|
Сложность: 3- Классы: 10,11
|
Существует ли выпуклый многогранник, имеющий 12 рёбер, которые соответственно равны и параллельны 12 диагоналям граней куба?
Найдите объём правильного октаэдра (правильного восьмигранника),
ребро которого равно
a .
|
|
Сложность: 3+ Классы: 10,11
|
Около правильного тетраэдра ABCD описана сфера. На его гранях как на
основаниях построены во внешнюю сторону правильные пирамиды ABCD', ABDC', ACDB', BCDA', вершины которых лежат на этой сфере. Найдите угол между плоскостями ABC' и ACD'.
|
|
Сложность: 4- Классы: 10,11
|
В набор "Юный геометр" входит несколько плоских граней, из которых можно собрать выпуклый многогранник. Юный геометр Саша разделил эти грани на две кучки. Могло ли случиться, что из граней каждой кучки тоже можно собрать выпуклый многогранник?
(И в начале, и в конце каждая из граней набора должна являться гранью многогранника.)
|
|
Сложность: 4- Классы: 10,11
|
Каждый из двух правильных многогранников P и Q разрезали плоскостью на две части. Одну из частей P и одну из частей Q приложили друг к другу по плоскости разреза. Может ли получиться правильный многогранник, не равный ни одному из исходных, и если да, то сколько у него может быть граней?
Страница: 1
2 3 4 5 6 >> [Всего задач: 30]