ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Тема:
Все темы
>>
Геометрия
>>
Планиметрия
>>
Окружности
>>
Вписанный угол
>>
Угол между касательной и хордой
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Около остроугольного треугольника BCD описана окружность и к ней в точке C проведена касательная CA. Другая окружность касается прямой BD в точке D, проходит через точку C и второй раз пересекает прямую CA в точке A. Известно, что AD = a, BC = b, BD = c. Найти AC. Решение |
Страница: << 21 22 23 24 25 26 27 >> [Всего задач: 275]
В треугольнике PQR точка T лежит на стороне PR, ∠QTR = ∠PQR, PT = 8, TR = 1.
В треугольнике KLM проведена медиана LN. Известно, что ∠KLM = ∠LNM, KM = 10.
На сторонах острого угла ABC взяты точки A и C. Одна окружность касается прямой AB в точке B и проходит через точку C. Вторая окружность касается прямой BC в точке B и проходит через точку A. Точка D – вторая общая точка окружностей. Известно, что AB = a, CD = b, BC = c. Найти AD.
Около остроугольного треугольника BCD описана окружность и к ней в точке C проведена касательная CA. Другая окружность касается прямой BD в точке D, проходит через точку C и второй раз пересекает прямую CA в точке A. Известно, что AD = a, BC = b, BD = c. Найти AC.
Касательная в точке A к описанной окружности треугольника ABC пересекает продолжение стороны BC за точку B в точке K, L – середина AC, а точка M на отрезке AB такова, что ∠AKM = ∠CKL. Докажите, что MA = MB.
Страница: << 21 22 23 24 25 26 27 >> [Всего задач: 275] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|