Страница:
<< 20 21 22 23
24 25 26 >> [Всего задач: 275]
Пусть p – полупериметр остроугольного треугольника ABC,
q – полупериметр треугольника, образованного основаниями его высот.
Докажите, что p : q = R : r, где R и r – радиусы описанной и вписанной окружностей треугольника ABC.
|
|
Сложность: 3+ Классы: 9,10,11
|
Окружности ω1 и ω2 пересекаются в точках A и B. Точки K1 и K2 на ω1 и ω2 соответственно таковы, что K1A касается ω2, а K2A касается ω1. Описанная окружность треугольника K1BK2 пересекает вторично прямые AK1 и AK2 в точках L1 и L2 соответственно. Докажите, что точки L1 и L2 равноудалены от прямой AB.
Точка H – ортоцентр треугольника ABC. Касательные, проведённые к описанным окружностям треугольников CHB и AHB в точке H, пересекают прямую AC в точках A1 и C1 соответственно. Докажите, что A1H = C1H.
|
|
Сложность: 3+ Классы: 9,10,11
|
Пусть C – одна из точек пересечения окружностей α и β. Касательная в этой точке к α пересекает β в точке B, а касательная в C к β пересекает α в точке A, причём A и B отличны от C, и угол ACB тупой. Прямая AB вторично пересекает α и β в точках N и M соответственно. Докажите, что 2MN < AB.
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Пусть M – середина основания AC равнобедренного треугольника ABC. На сторонах AB и BC отмечены соответственно точки E и F так, что AE ≠ CF и
∠FMC = ∠MEF = α. Найдите ∠AEM.
Страница:
<< 20 21 22 23
24 25 26 >> [Всего задач: 275]