ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Докажите, что при любых x, y, z выполнено неравенство: x4 + y4 + z² + 1 ≥ 2x(xy² – x + z + 1). ![]() ![]() Круг радиуса 1 покрыт семью одинаковыми кругами. Докажите, что их радиус не меньше ½. ![]() ![]() ![]() Петя записал несколько алгебраических выражений, возвёл каждое из них в квадрат и сложил результаты. ![]() ![]() ![]() Взаимно перпендикулярные диаметр KM и хорда AB некоторой окружности пересекаются в точке N, KN ≠ NM. На продолжении отрезка AB за точку A взята точка L, LN = a, AN = b. Найдите расстояние от точки N до точки пересечения высот треугольника KLM. ![]() ![]() |
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 236]
На стороне BC остроугольного треугольника ABC (AB ≠ AC) как на диаметре построена полуокружность, пересекающая высоту AD в точке M, AD = a, MD = b, H – точка пересечения высот треугольника ABC. Найдите AH.
Взаимно перпендикулярные диаметр KM и хорда AB некоторой окружности пересекаются в точке N, KN ≠ NM. На продолжении отрезка AB за точку A взята точка L, LN = a, AN = b. Найдите расстояние от точки N до точки пересечения высот треугольника KLM.
На окружности даны точки K и L. Постройте такой треугольник ABC, что KL является его средней линией, параллельной AB, и при этом точка C и точка пересечения медиан треугольника ABC лежат на данной окружности.
Точка M – середина хорды AB. Хорда CD пересекает AB в точке M. На отрезке CD как на диаметре построена полуокружность. Точка E лежит на этой полуокружности, и ME – перпендикуляр к CD. Найдите угол AEB.
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 236] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |