ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи На прямой взяты три различные точки L, M и N (M между L и N, LNMN). На отрезках LM, MN и LN как на диаметрах построены полуокружности, середины которых — соответственно точки A, B и C. Точка C лежит по одну сторону, а точки A и B — по другую сторону от прямой LN. Найдите отношение площади фигуры, ограниченной этими тремя полуокружностями, к площади треугольника ABC. Решение |
Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 75]
Постройте такое подмножество круга, площадью в половину площади круга, что его образ при симметрии относительно любого диаметра пересекается с ним по площади, равной четверти круга.
На прямой взяты три различные точки L, M и N (M между L и N, LNMN). На отрезках LM, MN и LN как на диаметрах построены полуокружности, середины которых — соответственно точки A, B и C. Точка C лежит по одну сторону, а точки A и B — по другую сторону от прямой LN. Найдите отношение площади фигуры, ограниченной этими тремя полуокружностями, к площади треугольника ABC.
На прямой взяты три различные точки A, B и C (B между A и C, ABBC). На отрезках AB, BC и AC как на диаметрах построены полуокружности, середины которых — соответственно точки K, L и M. Точка K лежит по одну сторону, а точки L и M — по другую сторону от прямой AC. Найдите отношение площади фигуры, ограниченной этими тремя полуокружностями, к площади треугольника KLM.
Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 75] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|