ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В квадрате PQRS точка B лежит на стороне RS, а точка A — на стороне SP. Отрезки QB и RA пересекаются в точке T, причём косинус угла BTR равен -0, 2. Найдите сторону квадрата, если известно, что RA = 10, а QB = a.

   Решение

Задачи

Страница: << 70 71 72 73 74 75 76 >> [Всего задач: 501]      



Задача 102694

Темы:   [ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 4
Классы: 8,9

В квадрате ABCD точка M лежит на стороне BC, а точка N — на стороне AB. Прямые AM и DN пересекаются в точке O.Найдите площадь квадрата, если известно, что DN = 4, AM = 3, а косинус угла DOA равен q.

Прислать комментарий     Решение


Задача 102695

Темы:   [ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 4
Классы: 8,9

В квадрате PQRS точка B лежит на стороне RS, а точка A — на стороне SP. Отрезки QB и RA пересекаются в точке T, причём косинус угла BTR равен -0, 2. Найдите сторону квадрата, если известно, что RA = 10, а QB = a.

Прислать комментарий     Решение


Задача 109518

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Прямоугольники и квадраты. Признаки и свойства ]
[ Признаки подобия ]
[ Площадь треугольника (через высоту и основание) ]
Сложность: 4
Классы: 8,9,10

Верно ли, что любые два прямоугольника равной площади можно расположить на плоскости так, что любая горизонтальная прямая, пересекающая один из них, будет пересекать и второй, причём по отрезку той же длины?

Прислать комментарий     Решение

Задача 111362

Темы:   [ ГМТ - прямая или отрезок ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 4
Классы: 8,9

Найдите геометрическое место центров прямоугольников, вписанных в треугольник ABC так, что одна сторона прямоугольника лежит на наибольшей стороне AB , а концы противоположной стороны – на сторонах AC и BC .
Прислать комментарий     Решение


Задача 111664

Темы:   [ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
[ Прямоугольники и квадраты. Признаки и свойства ]
[ Вспомогательная окружность ]
Сложность: 4
Классы: 8,9

В прямоугольник ABCD вписаны два различных прямоугольника, имеющих общую вершину K на стороне AB . Докажите, что сумма их площадей равна площади прямоугольника ABCD
Прислать комментарий     Решение


Страница: << 70 71 72 73 74 75 76 >> [Всего задач: 501]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .