ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Каких пятизначных чисел больше: не делящихся на 5 или тех, у которых ни первая, ни вторая цифра слева – не пятёрка?

   Решение

Задачи

Страница: << 72 73 74 75 76 77 78 >> [Всего задач: 598]      



Задача 64927

Темы:   [ Ребусы ]
[ Десятичная система счисления ]
Сложность: 2+
Классы: 5,6

К некоторому числу прибавили его сумму цифр и получили 2014. Приведите пример такого числа.

Прислать комментарий     Решение

Задача 88254

Темы:   [ Основная теорема арифметики. Разложение на простые сомножители ]
[ Десятичная система счисления ]
Сложность: 2+
Классы: 5,6,7,8

Существует ли целое число, произведение цифр которого равно  а) 1980?  б) 1990?  в) 2000?

Прислать комментарий     Решение

Задача 103802

Темы:   [ Правило произведения ]
[ Десятичная система счисления ]
[ Делимость чисел. Общие свойства ]
[ Мощность множества. Взаимно-однозначные отображения ]
Сложность: 2+
Классы: 7,8

Каких пятизначных чисел больше: не делящихся на 5 или тех, у которых ни первая, ни вторая цифра слева – не пятёрка?

Прислать комментарий     Решение

Задача 107735

Темы:   [ Делимость чисел. Общие свойства ]
[ Десятичная система счисления ]
Сложность: 2+
Классы: 7,8,9

Найдите наибольшее четырёхзначное число, все цифры которого различны и которое делится на 2, 5, 9 и 11.

Прислать комментарий     Решение

Задача 109456

Темы:   [ Делимость чисел. Общие свойства ]
[ Десятичная система счисления ]
Сложность: 2+
Классы: 6,7,8,9

Существует ли натуральное число, кратное 2007, сумма цифр которого равна 2007?

Прислать комментарий     Решение

Страница: << 72 73 74 75 76 77 78 >> [Всего задач: 598]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .