Страница:
<< 9 10 11 12
13 14 15 >> [Всего задач: 187]
|
|
Сложность: 5- Классы: 9,10,11
|
Существует ли такое натуральное число A, что если приписать его к самому себе справа, то полученное число окажется полным квадратом?
|
|
Сложность: 5- Классы: 8,9,10
|
Найдите все такие нечётные натуральные n > 1, что для любых взаимно простых делителей a и b числа n число a + b – 1 также является делителем n.
|
|
Сложность: 5- Классы: 9,10,11
|
Докажите, что существует бесконечно много натуральных n, для которых числитель несократимой дроби, равной 1 + ½ + ... + 1/n, не является степенью простого числа с натуральным показателем.
|
|
Сложность: 5 Классы: 8,9,10
|
Найдите все такие натуральные числа n, что для любых двух его взаимно
простых делителей a и b число a + b – 1 также является делителем n.
Решите ребус: АХ×УХ = 2001.
Страница:
<< 9 10 11 12
13 14 15 >> [Всего задач: 187]