ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Найдите наименьшее четырёхзначное число СЕЕМ, для которого существует решение ребуса МЫ + РОЖЬ = СЕЕМ. (Одинаковым буквам соответствуют одинаковые цифры, разным — разные.)

   Решение

Задачи

Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 350]      



Задача 102861

Тема:   [ Ребусы ]
Сложность: 2
Классы: 6,7

Ребус. Решите числовой ребус ААААВВВ+ССК=1234 (разным буквам соответствуют разные цифры, а одинаковым одинаковые)
Прислать комментарий     Решение


Задача 103882

Темы:   [ Ребусы ]
[ Перебор случаев ]
Сложность: 2
Классы: 6,7

Найдите наименьшее четырёхзначное число СЕЕМ, для которого существует решение ребуса МЫ + РОЖЬ = СЕЕМ. (Одинаковым буквам соответствуют одинаковые цифры, разным — разные.)

Прислать комментарий     Решение


Задача 103883

Тема:   [ Математическая логика (прочее) ]
Сложность: 2
Классы: 6,7

На острове живут рыцари, которые всегда говорят правду, и лжецы, которые всегда лгут. Путник встретил троих островитян и спросил каждого из них: ''Сколько рыцарей среди твоих спутников?''. Первый ответил: ''Ни одного''. Второй сказал: ''Один''. Что сказал третий?

Прислать комментарий     Решение


Задача 32790

Тема:   [ Математическая логика (прочее) ]
Сложность: 2+
Классы: 7,8

Известно, что среди членов правительства Лимонии (а всего в нем 20 членов) заведомо имеется хотя бы один честный, а также что из любых двух хотя бы один -- взяточник. Сколько в правительстве взяточников?
Прислать комментарий     Решение


Задача 35434

Тема:   [ Математическая логика (прочее) ]
Сложность: 2+
Классы: 6,7

Беседуют трое: Белокуров, Чернов и Рыжов. Брюнет сказал Белокурову: "Любопытно. Что один из нас русый, другой - брюнет, а третий - рыжий, но ни у кого цвет волос не соответствует фамилии". Какой цвет волос имеет каждый из беседующих?
Прислать комментарий     Решение


Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 350]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .