ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Две окружности радиуса 1 пересекаются в точках X, Y, расстояние между которыми также равно 1. Из точки C одной окружности проведены касательные CA, CB к другой. Прямая CB вторично пересекает первую окружность в точке A'. Найти расстояние AA'.

   Решение

Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 78]      



Задача 103934

Темы:   [ Окружность, вписанная в угол ]
[ Вписанный угол равен половине центрального ]
[ Равнобедренные, вписанные и описанные трапеции ]
[ Пересекающиеся окружности ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Теорема синусов ]
[ Вневписанные окружности ]
Сложность: 4
Классы: 8,9

Две окружности радиуса 1 пересекаются в точках X, Y, расстояние между которыми также равно 1. Из точки C одной окружности проведены касательные CA, CB к другой. Прямая CB вторично пересекает первую окружность в точке A'. Найти расстояние AA'.

Прислать комментарий     Решение

Задача 109037

Темы:   [ Окружность, вписанная в угол ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 4
Классы: 8,9

MA и MB – касательные к окружности O,; C – точка внутри окружности, лежащая на дуге AB с центром в точке M . Доказать, что отличные от A и B точки пересечения прямых AC и BC с окружностью O лежат на противоположных концах одного диаметра.
Прислать комментарий     Решение


Задача 111717

Темы:   [ Окружность, вписанная в угол ]
[ Вписанные и описанные окружности ]
[ ГМТ - прямая или отрезок ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 4
Классы: 8,9,10

Имеется треугольник ABC. На луче BA отложим точку A1, так что отрезок BA1 равен BC. На луче CA отложим точку A2, так что отрезок C2 равен BC. Аналогично построим точки B1, B2 и C1, C2. Докажите, что прямые A1A2, B1B 2, C1C2 параллельны.

Прислать комментарий     Решение

Задача 56896

Темы:   [ Окружность, вписанная в угол ]
[ Вписанная, описанная и вневписанная окружности; их радиусы ]
[ Касающиеся окружности ]
[ Теорема Пифагора (прямая и обратная) ]
[ Теорема косинусов ]
Сложность: 4+
Классы: 9,10

Окружность S1 вписана в угол A треугольника ABC; окружность S2 вписана в угол B и касается S1 (внешним образом); окружность S3 вписана в угол C и касается S2; окружность S4 вписана в угол A и касается S3 и т. д. Докажите, что окружность S7 совпадает с S1.

Прислать комментарий     Решение

Задача 103937

Темы:   [ Окружность, вписанная в угол ]
[ Две касательные, проведенные из одной точки ]
[ Вспомогательные подобные треугольники ]
[ Наибольшая или наименьшая длина ]
[ Периметр треугольника ]
Сложность: 4+
Классы: 9,10,11

Дан выпуклый четырехугольник ABCD. Прямые BC и AD пересекаются в точке O, причём B лежит на отрезке O и A на отрезке OD. I – центр вписанной окружности треугольника OAB, J – центр вневписанной окружности треугольника OCD, касающейся стороны CD и продолжений двух других сторон. Перпендикуляры, опущенные из середины отрезка IJ на прямые BC и AD, пересекают соответствующие стороны четырёхугольника (не продолжения) в точках X и Y. Доказать, что отрезок XY делит периметр четырёхугольника ABCD пополам, причём из всех отрезков с этим свойством и концами на BC и AD  XY имеет наименьшую длину.

Прислать комментарий     Решение

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 78]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .