ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 78]      



Задача 53064

Темы:   [ Окружность, вписанная в угол ]
[ Средние пропорциональные в прямоугольном треугольнике ]
Сложность: 4-
Классы: 8,9

К окружности проведены касательные, касающиеся её в концах диаметра AB. Произвольная касательная к окружности пересекает эти касательные в точках K и M. Докажите, что произведение AK . BM постоянно.

Прислать комментарий     Решение


Задача 108199

Темы:   [ Окружность, вписанная в угол ]
[ Признаки и свойства параллелограмма ]
[ Четыре точки, лежащие на одной окружности ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 4-
Классы: 8,9

Внутри прямого угла KLM взята точка P. Окружность S1 с центром O1 касается сторон LK и LP угла KLP в точках A и D соответственно, а окружность S2 с центром O2 такого же радиуса касается сторон угла MLP, причём стороны LP – в точке B. Оказалось, что точка O1 лежит на отрезке AB. Пусть C – точка пересечения прямых O2D и KL. Докажите, что BC – биссектриса угла ABD.

Прислать комментарий     Решение

Задача 55587

Темы:   [ Окружность, вписанная в угол ]
[ Симметрия помогает решить задачу ]
[ Биссектриса угла ]
Сложность: 4-
Классы: 8,9

Дана прямая l и точки A и B по одну сторону от нее. Найдите на прямой l такую точку M, чтобы луч MA был биссектрисой угла между лучом MB и одним из лучей с вершиной M, принадлежащих данной прямой l.

Прислать комментарий     Решение

Задача 108493

Темы:   [ Окружность, вписанная в угол ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Вневписанные окружности ]
[ Признаки и свойства касательной ]
Сложность: 4-
Классы: 8,9

Окружность с центром в точке M касается сторон угла AOB в точках A и B. Вторая окружность с центром в точке N касается отрезка OA, луча BA и продолжения стороны угла OB за точку O. Известно, что ON : OM = 12 : 13. Найдите отношение радиусов окружностей.

Прислать комментарий     Решение


Задача 108494

Темы:   [ Окружность, вписанная в угол ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Вневписанные окружности ]
[ Признаки и свойства касательной ]
Сложность: 4-
Классы: 8,9

Первая окружность с центром в точке A касается сторон угла KOL в точках K и L. Вторая окружность с центром в точке B касается отрезка OK, луча LK и продолжения стороны угла OL за точку O. Известно, что отношение радиуса первой окружности к радиусу второй окружности равно $ {\frac{20}{9}}$. Найдите отношение отрезков OB и OA.

Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 78]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .