ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В вершинах шестиугольника записаны числа 12, 1, 10, 6, 8, 3 (в таком порядке). За один ход разрешено выбрать две соседние вершины и к числам, стоящим в данных вершинах, одновременно прибавить единицу или одновременно вычесть из них единицу. Можно ли получить в итоге шесть чисел в таком порядке: а) 14, 6, 13, 4, 5, 2; б) 6, 17, 14, 3, 15, 2? Решение |
Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 288]
а) 14, 6, 13, 4, 5, 2; б) 6, 17, 14, 3, 15, 2?
Круг разделён на шесть секторов, в каждом из которых стоит фишка. Разрешается за один ход сдвинуть любые две фишки в соседние с ними сектора.
На доске выписаны числа 1, 2, ..., 20. Разрешается стереть любые два числа a и b и заменить их на число ab + a + b.
В таблице 8×8 все четыре угловые клетки закрашены чёрным цветом, все остальные – белым. Докажите, что с помощью перекрашивания строк и столбцов нельзя добиться того, чтобы все клетки стали белыми. Под перекрашиванием строки или столбца понимается изменение цвета всех клеток в строке или столбце.
Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 288] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|