Страница:
<< 7 8 9 10
11 12 13 >> [Всего задач: 288]
Дана квадратная таблица 4×4, в каждой клетке которой стоит знак "+" или "–" :
За один ход можно поменять знаки на противоположные в любой строке или любом столбце.
Можно ли через несколько ходов получить таблицу из одних плюсов?
|
|
Сложность: 3+ Классы: 7,8,9
|
На доске написаны числа
а) 1, 2, 3, ..., 2003;
б) 1, 2, 3, ..., 2005.
Разрешается стереть два любых числа и вместо них написать их разность. Можно ли добиться того, чтобы все числа стали нулями?
Круг разделён на шесть секторов, в каждом из которых лежит по селёдке. Разрешается за один ход передвинуть любые две селёдки в соседних секторах, двигая их в разные стороны. Можно ли с помощью этой операции собрать все селёдки в одном секторе?
|
|
Сложность: 3+ Классы: 7,8,9
|
В ряд выписаны числа 1, 2, 3, ..., 99, 100. Разрешается менять местами два числа, между которыми стоит ровно одно число.
Можно ли получить ряд 100, 99, 98, ..., 2, 1?
|
|
Сложность: 3+ Классы: 7,8,9,10
|
10 фишек стоят на столе по кругу. Сверху фишки красные, снизу – синие.
Разрешены две операции:
а) перевернуть четыре фишки, стоящие подряд;
  б) перевернуть четыре фишки, расположенные так: ××0×× (× – фишка, входящая в четвёрку, 0 – не входящая).
Удастся ли, используя несколько раз разрешённые операции, перевернуть все фишки синей стороной вверх?
Страница:
<< 7 8 9 10
11 12 13 >> [Всего задач: 288]