Страница:
<< 1 2 3 4
5 6 7 >> [Всего задач: 155]
Семь монет расположены по кругу. Известно, что какие-то четыре из них, идущие подряд, – фальшивые и что каждая фальшивая монета легче настоящей. Объясните, как найти две фальшивые монеты за одно взвешивание на чашечных весах без гирь. (Все фальшивые монеты весят одинаково.)
|
|
Сложность: 2+ Классы: 6,7,8
|
На физическом кружке учитель поставил следующий эксперимент. Он разложил на чашечные весы 16 гирек массами 1, 2, 3, ..., 16 грамм так, что одна из чаш перевесила. Пятнадцать учеников по очереди выходили из класса и забирали с собой по одной гирьке, причем после выхода каждого ученика весы меняли свое положение и перевешивала противоположная чаша весов. Какая гирька могла остаться на весах?
|
|
Сложность: 3- Классы: 5,6,7,8
|
На столе в ряд лежат четыре монеты. Среди них обязательно есть как настоящие, так и фальшивые
(которые легче настоящих). Известно, что любая настоящая монета лежит левее любой фальшивой.
Как за одно взвешивание на чашечных весах без гирь определить тип каждой монеты, лежащей на столе?
Фальшивомонетчик Вася изготовил четыре монеты достоинством
1, 3, 4, 7 квача, которые должны весить 1, 3, 4, 7 граммов соответственно.
Но одну из этих монет он сделал некачественно – с неправильным весом.
Как за два взвешивания на чашечных весах без гирек определить "неправильную"
монету?
|
|
Сложность: 3 Классы: 7,8,9
|
Известно, что среди нескольких монет имеется ровно одна фальшивая
(отличается по весу от настоящих). С помощью двух взвешиваний на чашечных
весах без гирь определите, легче или тяжелее фальшивая монета настоящей
(находить ее не надо), если монет
а) 100;
б) 99;
в) 98?
Страница:
<< 1 2 3 4
5 6 7 >> [Всего задач: 155]