ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На плоскости даны 16 точек (см. рисунок).

  а) Покажите, что можно стереть не более восьми из них так, что из оставшихся никакие четыре не будут лежать в вершинах квадрата.
  б) Покажите, что можно обойтись стиранием шести точек.
  в) Найдите минимальное число точек, которые достаточно стереть для этого.

   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 35]      



Задача 104061

Темы:   [ Наглядная геометрия ]
[ Системы точек и отрезков. Примеры и контрпримеры ]
[ Комбинаторная геометрия (прочее) ]
Сложность: 4-
Классы: 6,7,8

Дед звал внука к себе в деревню:
  – Вот посмотришь, какой я необыкновенный сад посадил! У меня там растёт четыре груши, а ещё есть яблони, причём они посажены так, что на расстоянии 10 метров от каждой яблони растёт ровно две груши.
  – Ну и что тут интересного, – ответил внук. – У тебя всего две яблони.
 – А вот и не угадал, – улыбнулся дед. – Яблонь у меня в саду больше, чем груш.
Нарисуйте, как могли расти яблони и груши в саду у деда. Постарайтесь разместить на рисунке как можно больше яблонь, не нарушая условий.

Прислать комментарий     Решение

Задача 104121

Темы:   [ Наглядная геометрия ]
[ Экстремальные свойства (прочее) ]
Сложность: 4
Классы: 7,8,9,10

На плоскости даны 16 точек (см. рисунок).

  а) Покажите, что можно стереть не более восьми из них так, что из оставшихся никакие четыре не будут лежать в вершинах квадрата.
  б) Покажите, что можно обойтись стиранием шести точек.
  в) Найдите минимальное число точек, которые достаточно стереть для этого.

Прислать комментарий     Решение

Задача 88260

Темы:   [ Разные задачи на разрезания ]
[ Наглядная геометрия ]
Сложность: 2
Классы: 5,6,7

Легко можно разрезать квадрат на два равных треугольника или два равных четырёхугольника.
А как разрезать квадрат на два равных пятиугольника или два равных шестиугольника?

Прислать комментарий     Решение

Задача 32095

Темы:   [ Обход графов ]
[ Наглядная геометрия ]
Сложность: 2+
Классы: 5,6,7,8

Можно ли нарисовать эту картинку (см. рис.), не отрывая карандаша от бумаги и проходя по каждой линии по одному разу?

Прислать комментарий     Решение

Задача 35072

Темы:   [ Разрезания (прочее) ]
[ Наглядная геометрия ]
Сложность: 2+
Классы: 7,8,9

Можно ли поверхность единичного куба оклеить четырьмя треугольниками площади 1,5?

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 35]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .