ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Существуют ли такие три квадратных трёхчлена, что каждый из них имеет два различных действительных корня, а сумма любых двух из них действительных корней не имеет?

   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 263]      



Задача 86511

Темы:   [ Исследование квадратного трехчлена ]
[ Методы решения задач с параметром ]
Сложность: 3-
Классы: 8,9,10,11

Квадратный трехчлен  y = ax² + bx + c  не имеет корней и  а + b + c > 0.  Найдите знак коэффициента с.

Прислать комментарий     Решение

Задача 105108

Темы:   [ Исследование квадратного трехчлена ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3-
Классы: 7,8,9,10

Существуют ли такие три квадратных трёхчлена, что каждый из них имеет корень, а сумма любых двух из них корней не имеет?

Прислать комментарий     Решение

Задача 105114

Темы:   [ Исследование квадратного трехчлена ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3-
Классы: 8,9,10

Существуют ли такие три квадратных трёхчлена, что каждый из них имеет два различных действительных корня, а сумма любых двух из них действительных корней не имеет?

Прислать комментарий     Решение

Задача 109450

Темы:   [ Исследование квадратного трехчлена ]
[ Методы решения задач с параметром ]
[ Графики и ГМТ на координатной плоскости ]
Сложность: 3-
Классы: 8,9

Может ли вершина параболы  у = 4х² – 4(а + 1)х + а  лежать во второй координатной четверти при каком-нибудь значении а?

Прислать комментарий     Решение

Задача 116488

Темы:   [ Квадратные уравнения. Теорема Виета ]
[ Аналитический метод в геометрии ]
Сложность: 3-
Классы: 9,10,11

Прямая пересекает график функции  y = x²  в точках с абсциссами x1 и x2, а ось абсцисс – в точке с абсциссой x3. Докажите, что    .

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 263]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .