Страница:
<< 22 23 24 25
26 27 28 >> [Всего задач: 204]
|
|
Сложность: 3+ Классы: 10,11
|
В кубе АВСDА1В1С1D1 площадь ортогональной проекции грани АА1В1В на плоскость, перпендикулярную диагонали АС1, равна 1.
Найдите площадь ортогональной проекции куба на эту плоскость.
|
|
Сложность: 3+ Классы: 8,9,10
|
Куб со стороной 10 разбит на 1000 кубиков с ребром 1. В каждом кубике записано число, при этом сумма чисел в каждом столбике из 10 кубиков (в любом из трёх направлений) равна 0. В одном из кубиков (обозначим его через A) записана единица. Через кубик A проходит три слоя, параллельных граням куба (толщина каждого слоя равна 1). Найдите сумму всех чисел в кубиках, не лежащих в этих слоях.
|
|
Сложность: 3+ Классы: 7,8,9
|
В вершинах кубика написали числа от 1 до 8, а на каждом ребре –
модуль разности чисел, стоящих в его концах.
Какое наименьшее количество различных чисел может быть написано на ребрах?
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Поверхность кубика Рубика 3 x 3 x 3 состоит из 54 клеток. Какое наибольшее количество клеток можно отметить так, чтобы отмеченные клетки не имели общих вершин?
|
|
Сложность: 4- Классы: 9,10,11
|
Космический аппарат сел на неподвижный астероид, про который известно только, что он представляет собой шар или куб. Аппарат проехал по поверхности астероида в точку, симметричную начальной относительно центра астероида. Всё это время он непрерывно передавал свои пространственные координаты на космическую станцию, и там точно определили трёхмерную траекторию аппарата. Может ли этого оказаться недостаточно, чтобы отличить, по кубу или по шару ездил аппарат?
Страница:
<< 22 23 24 25
26 27 28 >> [Всего задач: 204]