Страница:
<< 1 2
3 >> [Всего задач: 13]
|
|
Сложность: 4 Классы: 10,11
|
В круглый бокал, осевое сечение которого — график функции
y =
x4, опускают
вишенку — шар радиуса
r. При каком наибольшем
r шар коснется нижней
точки дна? (Другими словами, каков максимальный радиус
r круга, лежащего в
области
yx4 и содержащего начало координат?)
|
|
Сложность: 4 Классы: 10,11
|
Основание пирамиды – квадрат. Высота пирамиды пересекает диагональ
основания. Найдите наибольший объём такой пирамиды, если периметр
диагонального сечения, содержащего высоту пирамиды, равен 5.
|
|
Сложность: 3+ Классы: 10,11
|
При всех значениях параметра a найдите число действительных корней уравнения x³ – x – a = 0.
|
|
Сложность: 4- Классы: 10,11
|
Найдите все такие a и b, что и при всех x выполнено неравенство |a sin x + b sin 2x| ≤ 1.
|
|
Сложность: 4- Классы: 9,10,11
|
Пусть f(x) – некоторый многочлен ненулевой степени.
Может ли оказаться, что уравнение f(x) = a при любом значении a имеет чётное число решений?
Страница:
<< 1 2
3 >> [Всего задач: 13]