ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Целые числа от 1 до n записаны в строчку. Под ними записаны те же числа в другом порядке. Может ли случиться так, что сумма каждого числа и записанного под ним есть точный квадрат а) при n = 9, б) при n = 11, в) при n = 1996. ![]() |
Страница: << 120 121 122 123 124 125 126 >> [Всего задач: 1111]
Целые числа от 1 до n записаны в строчку. Под ними записаны те же числа в другом порядке. Может ли случиться так, что сумма каждого числа и записанного под ним есть точный квадрат а) при n = 9, б) при n = 11, в) при n = 1996.
В приведённой таблице заполнить все клетки так, чтобы числа в каждом столбце и каждой строке составили геометрическую прогрессию.
Несколько путников движутся с постоянными скоростями по прямолинейной дороге. Известно, что в течение некоторого периода времени сумма попарных расстояний между ними монотонно уменьшалась. Докажите, что в течение того же периода сумма расстояний от некоторого путника до всех остальных тоже монотонно уменьшалась.
Можно ли в клетках таблицы 2002×2002 расставить натуральные числа от 1 до 2002² так, чтобы для каждой клетки этой таблицы из строки или из столбца, содержащих эту клетку, можно было бы выбрать тройку чисел, одно из которых равно произведению двух других?
Леша поставил в клетки таблицы 22×22 натуральные числа от 1 до 22².
Страница: << 120 121 122 123 124 125 126 >> [Всего задач: 1111] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |