ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В выпуклом шестиугольнике AC1BA1CB1   AB1 = AC1BC1 = BA1CA1 = CB1  и  ∠A + ∠B + ∠C = ∠A1 + ∠B1 + ∠C1.
Докажите, что площадь треугольника ABC равна половине площади шестиугольника.

   Решение

Задачи

Страница: << 73 74 75 76 77 78 79 >> [Всего задач: 507]      



Задача 98117

Темы:   [ Разрезания на части, обладающие специальными свойствами ]
[ Многоугольники (прочее) ]
[ Правильные многоугольники ]
[ Поворот помогает решить задачу ]
[ Гомотетия помогает решить задачу ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 10,11

Автор: Анджанс А.

Можно ли разрезать плоскость на многоугольники, каждый из которых переходит в себя при повороте на 360°/7 вокруг некоторой точки и все стороны которых больше 1 см?

Прислать комментарий     Решение

Задача 98248

Темы:   [ Правильные многоугольники ]
[ Поворот помогает решить задачу ]
[ Сумма внутренних и внешних углов многоугольника ]
Сложность: 4-
Классы: 8,9

Прямая отрезает от правильного n-угольника со стороной 1 треугольник APQ так, что  AP + AQ = 1  (A – вершина n-угольника).
Найдите сумму углов, под которыми отрезок PQ виден из всех вершин n-угольника, кроме A.
Прислать комментарий     Решение


Задача 107829

Темы:   [ Шестиугольники ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
[ Сумма внутренних и внешних углов многоугольника ]
[ Перегруппировка площадей ]
Сложность: 4-
Классы: 8,9,10

В выпуклом шестиугольнике AC1BA1CB1   AB1 = AC1BC1 = BA1CA1 = CB1  и  ∠A + ∠B + ∠C = ∠A1 + ∠B1 + ∠C1.
Докажите, что площадь треугольника ABC равна половине площади шестиугольника.

Прислать комментарий     Решение

Задача 108113

Темы:   [ Правильные многоугольники ]
[ Поворот помогает решить задачу ]
[ Сумма внутренних и внешних углов многоугольника ]
Сложность: 4-
Классы: 8,9

Прямая отсекает от правильного 10-угольника ABCDEFGHIJ со стороной 1 треугольник PAQ, в котором  PA + AQ = 1.
Найдите сумму углов, под которыми виден отрезок PQ из вершин B, C, D, E, F, G, H, I, J.

Прислать комментарий     Решение

Задача 109189

Темы:   [ Системы отрезков, прямых и окружностей ]
[ Примеры и контрпримеры. Конструкции ]
[ Правильные многоугольники ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Правило произведения ]
Сложность: 4-
Классы: 8,9,10,11

Попав в новую компанию, Чичиков узнавал, кто с кем знаком. А чтобы запомнить это, он рисовал окружность и изображал каждого члена компании хордой, причём хорды знакомых между собой пересекались, а незнакомых – нет. Чичиков уверен, что такой набор хорд есть для любой компании. Прав ли он? (Совпадение концов хорд считается пересечением.)

Прислать комментарий     Решение

Страница: << 73 74 75 76 77 78 79 >> [Всего задач: 507]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .