ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Можно ли в пространстве составить замкнутую цепочку из 61 одинаковых согласованно вращающихся шестерёнок так, чтобы углы между сцепленными шестерёнками были не меньше 150°? При этом:
  для простоты шестёренки считаются кругами;
  шестерёнки сцеплены, если соответствующие окружности в точке соприкосновения имеют общую касательную;
  угол между сцепленными шестерёнками – это угол между радиусами их окружностей, проведёнными в точку касания;
  первая шестерёнка должна быть сцеплена со второй, вторая – с третьей, и т. д., 61-я – с первой, а другие пары шестерёнок не должны иметь общих точек.

   Решение

Задачи

Страница: << 163 164 165 166 167 168 169 >> [Всего задач: 2440]      



Задача 67163

Темы:   [ Арифметика остатков (прочее) ]
[ Арифметическая прогрессия ]
Сложность: 5
Классы: 8,9,10,11

В бесконечной арифметической прогрессии, где все числа натуральные, нашлись два числа с одинаковой суммой цифр. Обязательно ли в ней найдётся ещё одно число с такой же суммой цифр?
Прислать комментарий     Решение


Задача 107867

Темы:   [ Четность и нечетность ]
[ Поворот и винтовое движение ]
[ Двумерные поверхности ]
Сложность: 5
Классы: 9,10,11

Можно ли в пространстве составить замкнутую цепочку из 61 одинаковых согласованно вращающихся шестерёнок так, чтобы углы между сцепленными шестерёнками были не меньше 150°? При этом:
  для простоты шестёренки считаются кругами;
  шестерёнки сцеплены, если соответствующие окружности в точке соприкосновения имеют общую касательную;
  угол между сцепленными шестерёнками – это угол между радиусами их окружностей, проведёнными в точку касания;
  первая шестерёнка должна быть сцеплена со второй, вторая – с третьей, и т. д., 61-я – с первой, а другие пары шестерёнок не должны иметь общих точек.

Прислать комментарий     Решение

Задача 110069

Темы:   [ Делимость чисел. Общие свойства ]
[ Монотонность и ограниченность ]
[ Неравенство Коши ]
Сложность: 5
Классы: 9,10,11

На окружности расположена тысяча непересекающихся дуг, и на каждой из них написаны два натуральных числа. Сумма чисел каждой дуги делится на произведение чисел дуги, следующей за ней по часовой стрелке. Каково наибольшее возможное значение наибольшего из написанных чисел?

Прислать комментарий     Решение

Задача 31232

Темы:   [ Десятичная система счисления ]
[ Признаки делимости на 5 и 10 ]
Сложность: 2-
Классы: 6,7,8

Число x оканчивается на 5. Доказать, что x² оканчивается на 25.

Прислать комментарий     Решение

Задача 88238

Темы:   [ Арифметика. Устный счет и т.п. ]
[ Делимость чисел. Общие свойства ]
Сложность: 2-
Классы: 5,6,7

Делимое в шесть раз больше делителя, а делитель в шесть раз больше частного. Чему равны делимое, делитель и частное?

Прислать комментарий     Решение

Страница: << 163 164 165 166 167 168 169 >> [Всего задач: 2440]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .