ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 161 162 163 164 165 166 167 >> [Всего задач: 2440]      



Задача 60589

Темы:   [ Уравнения в целых числах ]
[ Числа Фибоначчи ]
[ Метод спуска ]
Сложность: 5-
Классы: 9,10,11

Решите в целых числах уравнения:   а)  x² – xy – y² = 1;   б)  x² – xy – y² = –1.

Прислать комментарий     Решение

Задача 73660

Темы:   [ Делимость чисел. Общие свойства ]
[ Последовательности (прочее) ]
[ Перебор случаев ]
Сложность: 5-
Классы: 8,9,10

Автор: Ионин Ю.И.

а) Существует ли бесконечная последовательность натуральных чисел, обладающая следующим свойством: ни одно из этих чисел не делится на другое, но среди каждых трёх чисел можно выбрать два, сумма которых делится на третье?

б) Если нет, то как много чисел может быть в наборе, обладающем таким свойством?

в) Решите ту же задачу при дополнительном условии: в набор разрешено включать только нечётные числа.

Вот пример такого набора из четырёх чисел: 3, 5, 7, 107. Здесь среди трёх чисел 3, 5, 7 сумма  5 + 7  делится на 3; в тройке 5, 7, 107 сумма  107 + 5  делится на 7; в тройке 3, 7, 107 сумма  7 + 107  делится на 3; наконец, в тройке 3, 5, 107 сумма  3 + 107  делится на 5.

Прислать комментарий     Решение

Задача 78761

Темы:   [ Деление с остатком ]
[ Суммы числовых последовательностей и ряды разностей ]
Сложность: 5-
Классы: 10,11

Имеется натуральное число  n > 1970.  Возьмём остатки от деления числа 2n на 2, 3, 4, ..., n. Доказать, что сумма этих остатков больше 2n.

Прислать комментарий     Решение

Задача 79328

Темы:   [ Основная теорема арифметики. Разложение на простые сомножители ]
[ Перебор случаев ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 5-
Классы: 9,10,11

Существует ли такое натуральное число A, что если приписать его к самому себе справа, то полученное число окажется полным квадратом?

Прислать комментарий     Решение

Задача 107998

Темы:   [ Деление с остатком ]
[ Индукция (прочее) ]
[ Монотонность и ограниченность ]
Сложность: 5-
Классы: 9,10,11

В ящиках лежат камни. За один ход выбирается число k, затем камни в ящиках делятся на группы по k штук и остаток менее, чем из k штук. Оставляют по одному камню из каждой группы и весь остаток. Можно ли за пять ходов добиться, чтобы в ящиках осталось ровно по одному камню, если в каждом из них
  а) не более 460 камней;
  б) не более 461 камня?
Прислать комментарий     Решение


Страница: << 161 162 163 164 165 166 167 >> [Всего задач: 2440]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .