ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На стороне AB треугольника ABC взята точка P, отличная от точек A и B, а на сторонах BC и AC – точки Q и R соответственно, причём четырёхугольник PQCR – параллелограмм. Пусть отрезки AQ и PR пересекаются в точке M, а отрезки BR и PQ – в точке N. Докажите, что сумма площадей треугольников AMP и BNP равна площади треугольника CQR.

   Решение

Задачи

Страница: << 20 21 22 23 24 25 26 >> [Всего задач: 226]      



Задача 102315

Темы:   [ Метод координат на плоскости ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
Сложность: 3+
Классы: 8,9

На координатной плоскости заданы точки A(9;1), B(2;0), D(1;5) и E(9;7). Найдите площадь пятиугольника ABCDE, где C — точка пересечения прямых AD и BE.
Прислать комментарий     Решение


Задача 102316

Темы:   [ Метод координат на плоскости ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
Сложность: 3+
Классы: 8,9

На координатной плоскости заданы точки A(1;9), C(5;8), D(8;2) и E(2;2). Найдите площадь пятиугольника ABCDE, где B — точка пересечения прямых EC и AD.
Прислать комментарий     Решение


Задача 102317

Темы:   [ Метод координат на плоскости ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
Сложность: 3+
Классы: 8,9

На координатной плоскости заданы точки A(1;3), B(1;9), C(6;8) и E(5;1). Найдите площадь пятиугольника ABCDE, где D — точка пересечения прямых AC и BE.
Прислать комментарий     Решение


Задача 102457

Темы:   [ Две пары подобных треугольников ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Признаки и свойства параллелограмма ]
Сложность: 3+
Классы: 8,9

На продолжении стороны BC параллелограмма ABCD за точку C взята точка F. Отрезок AF пересекает диагональ BD в точке E, а сторону CD – в точке G, причём  GF = 3,  а AE на 1 больше EG. Какую часть площади параллелограмма ABCD составляет площадь треугольника ADE?

Прислать комментарий     Решение

Задача 108099

Темы:   [ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Перегруппировка площадей ]
[ Трапеции (прочее) ]
Сложность: 3+
Классы: 8,9

На стороне AB треугольника ABC взята точка P, отличная от точек A и B, а на сторонах BC и AC – точки Q и R соответственно, причём четырёхугольник PQCR – параллелограмм. Пусть отрезки AQ и PR пересекаются в точке M, а отрезки BR и PQ – в точке N. Докажите, что сумма площадей треугольников AMP и BNP равна площади треугольника CQR.

Прислать комментарий     Решение

Страница: << 20 21 22 23 24 25 26 >> [Всего задач: 226]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .