Страница:
<< 36 37 38 39
40 41 42 >> [Всего задач: 411]
|
|
Сложность: 4+ Классы: 7,8,9
|
Среди 300 учеников одной математической школы некоторые путают лево и право, некоторые не путают, а некоторые делают все наоборот, чем им говорят. Первого сентября всех учеников выстроили в одну шеренгу (плечом к плечу) и скомандовали "нале-во!" По этой команде все одновременно повернулись на 90°, кто налево, а кто направо. Ровно через секунду каждый, кто оказался лицом к лицу к соседу, понимает, что не прав, и поворачивается кругом (на 180°). Как долго это может продолжаться?
|
|
Сложность: 4+ Классы: 9,10,11
|
Числовая последовательность
a0 ,
a1 ,
a2 , такова, что при всех неотрицательных
m и
n
(
m n ) выполняется соотношение
am+n+am-n=(a2m+a2n).
Найдите
a1995
, если
a1=1
.
|
|
Сложность: 4+ Классы: 8,9,10
|
а) Докажите, что при
n>4
любой выпуклый
n -угольник
можно разрезать на
n тупоугольных треугольников.
б) Докажите, что при любом
n существует выпуклый
n -угольник,
который нельзя разрезать меньше, чем на
n тупоугольных
треугольников.
в) На какое наименьшее число тупоугольных треугольников можно
разрезать прямоугольник?
|
|
Сложность: 5- Классы: 9,10,11
|
Лабиринтом называется клетчатый квадрат
10*10, некоторые пары соседних узлов в
котором соединены отрезком - "стеной" таким образом, что
переходя из клетки в соседнюю по стороне клетку и не проходя через
стены, можно посетить все
клетки квадрата. Границу квадрата будем также считать обнесенной
стеной.
В некоторой клетке некоторого лабиринта стоит робот.
Он понимает 4 команды - Л, П, В, Н, по которым соответственно
идет влево, вправо, вверх и вниз, а если перед ним "стена", то стоит
на месте. Как написать программу для робота, выполняя которую он
обойдет все клетки независимо от лабиринта и от своего начального
положения?
|
|
Сложность: 5- Классы: 7,8,9
|
В бесконечной цепочке нервных клеток каждая может находиться в одном из двух состояний: «покой» и «возбуждение». Если в данный момент клетка возбудилась, то она посылает сигнал, который через единицу времени (скажем, через одну миллисекунду) доходит до обеих соседних с ней клеток. Каждая клетка возбуждается в том и только в том случае, если к ней приходит сигнал от одной из соседних клеток; если сигналы приходят одновременно с двух сторон, то они погашаются, и клетка не возбуждается. Например, если в начальной момент времени
t = 0 возбудить три соседние клетки, а остальные оставить в покое, то возбуждение будет распространяться так, как показано на рисунке.
Пусть в начальный момент времени возбуждена только одна клетка. Сколько клеток будет находится в возбужденном состоянии через 15 мсек? через 65 мсек? через 1000 мсек? вообще через t мсек?
Что будет в том случае, если цепочка не бесконечная, а состоит из N клеток, соединённых в окружность,— будет ли возбуждение поддерживаться бесконечно долго или затухнет?
Страница:
<< 36 37 38 39
40 41 42 >> [Всего задач: 411]