ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

В классе меньше 30 человек. Вероятность того, что наугад выбранная девочка отличница, равна 3/13, а вероятность того, что наугад выбранный мальчик – отличник, равна 4/11. Сколько в классе отличников?

Вниз   Решение


Ключом шифра, называемого "поворотная решетка", является трафарет, изготовленный из квадратного листа клетчатой бумаги размера n×n
(n чётно). Некоторые из клеток вырезаются. Одна из сторон трафарета помечена. При наложении этого трафарета на чистый лист бумаги четырьмя возможными способами (помеченной стороной вверх, вправо, вниз, влево) его вырезы полностью покрывают всю площадь квадрата, причём каждая клетка оказывается под вырезом ровно один раз. Буквы сообщения, имеющего длину n², последовательно вписываются в вырезы трафарета, сначала наложенного на чистый лист бумаги помеченной стороной вверх. После заполнения всех вырезов трафарета буквами сообщения трафарет располагается в следующем положении и т. д. После снятия трафарета на листе бумаги оказывается зашифрованное сообщение.
Найдите число различных ключей для произвольного чётного числа n.

ВверхВниз   Решение


Диагонали вписанного в окружность радиуса R четырёхугольника ABCD пересекаются в точке M. Известно, что  AB = BC = a,  BD = m.
Найдите радиус описанной окружности треугольника BCM.

Вверх   Решение

Задачи

Страница: << 46 47 48 49 50 51 52 >> [Всего задач: 496]      



Задача 101891

Темы:   [ Вспомогательные подобные треугольники ]
[ Вписанные четырехугольники (прочее) ]
[ Трапеции (прочее) ]
Сложность: 3+
Классы: 8,9

Четырёхугольник ABCD вписан в окружность. Точка X лежит на его стороне AD, причём  BX || CD  и  CX || BA.  Найдите BC, если  AX = 3/2  и  DX = 6.

Прислать комментарий     Решение

Задача 101892

Темы:   [ Вспомогательные подобные треугольники ]
[ Вписанные четырехугольники (прочее) ]
[ Трапеции (прочее) ]
[ Квадратные уравнения. Теорема Виета ]
Сложность: 3+
Классы: 8,9

Четырёхугольник KLMN вписан в окружность. Точка P лежит на его стороне KL, причём  PM || KN  и  PN || LM.
Найдите длины отрезков KP и LP, если  MN = 6  и  KL = 13.

Прислать комментарий     Решение

Задача 102481

Темы:   [ Вспомогательные подобные треугольники ]
[ Вписанный четырехугольник с перпендикулярными диагоналями ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Площадь четырехугольника ]
Сложность: 3+
Классы: 8,9

Четырёхугольник PQRS вписан в окружность. Диагонали PR и QS перпендикулярны и пересекаются в точке M. Известно, что  PS = 13,  QM = 10,  QR = 26.  Найдите площадь четырёхугольника PQRS.

Прислать комментарий     Решение

Задача 102482

Темы:   [ Вспомогательные подобные треугольники ]
[ Вписанный четырехугольник с перпендикулярными диагоналями ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Площадь четырехугольника ]
Сложность: 3+
Классы: 8,9

Четырёхугольник ABCD вписан в окружность. Диагонали AC и BD перпендикулярны и пересекаются в точке K. Известно, что  AD = 5,  BC = 10,  BK = 6.
Найдите площадь четырёхугольника ABCD.

Прислать комментарий     Решение

Задача 108449

Темы:   [ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вписанные четырехугольники (прочее) ]
[ Отношения линейных элементов подобных треугольников ]
[ Вписанные и описанные окружности ]
Сложность: 3+
Классы: 8,9

Диагонали вписанного в окружность радиуса R четырёхугольника ABCD пересекаются в точке M. Известно, что  AB = BC = a,  BD = m.
Найдите радиус описанной окружности треугольника BCM.

Прислать комментарий     Решение

Страница: << 46 47 48 49 50 51 52 >> [Всего задач: 496]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .