ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

Автор: Жуков Г.

Можно ли нарисовать 1006 различных 2012-угольников, у которых все вершины общие, но при этом ни у каких двух нет ни одной общей стороны?

Вниз   Решение


Куб с ребром 2n+1 разрезают на кубики с ребром 1 и бруски размера 2x 2x 1 . Какое наименьшее количество единичных кубиков может при этом получиться?

ВверхВниз   Решение


Вписанную окружность спроецировали на стороны треугольника. Докажите, что шесть концов проекций принадлежат одной окружности.

ВверхВниз   Решение


Сторону АВ треугольника АВС продолжили за вершину В и выбрали на луче АВ точку А1 так, что точка В – середина отрезка АА1 . Сторону ВС продолжили за вершину С и отметили на продолжении точку В1 так, что С – середина ВВ1 . Аналогично, продолжили сторону СА за вершину А и отметили на продолжении точку С1 так, что А – середина СС1 . Найдите площадь треугольника А1В1С1 , если площадь треугольника АВС равна1.

ВверхВниз   Решение


На сторонах AB и BC треугольника ABC отложены равные отрезки AE и CF соответственно. Окружность, проходящая через точки B, C, E , и окружность, проходящая через точки A, B, F , пересекаются в точках B и D. Докажите, что BD – биссектриса угла ABC.

Вверх   Решение

Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 66]      



Задача 108646

Темы:   [ Вспомогательные подобные треугольники ]
[ Биссектриса угла (ГМТ) ]
[ Трапеции (прочее) ]
Сложность: 3
Классы: 8,9

M – точка пересечения диагоналей трапеции ABCD. На основании BC выбрана такая точка P, что  ∠APM = ∠DPM.
Докажите, что расстояние от точки C до прямой AP равно расстоянию от точки B до прямой DP.

Прислать комментарий     Решение

Задача 108653

Темы:   [ Вспомогательные равные треугольники ]
[ Биссектриса угла (ГМТ) ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 3
Классы: 8,9

На сторонах AB и BC треугольника ABC отложены равные отрезки AE и CF соответственно. Окружность, проходящая через точки B, C, E , и окружность, проходящая через точки A, B, F , пересекаются в точках B и D. Докажите, что BD – биссектриса угла ABC.

Прислать комментарий     Решение

Задача 54516

Темы:   [ Метод ГМТ ]
[ Биссектриса угла (ГМТ) ]
Сложность: 3
Классы: 8,9

Постройте окружность данного радиуса, касающуюся двух данных прямых.

Прислать комментарий     Решение


Задача 53177

Темы:   [ Подобные треугольники (прочее) ]
[ Биссектриса угла (ГМТ) ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 3+
Классы: 8,9

В прямоугольном треугольнике ABC биссектриса прямого угла B пересекает гипотенузу AC в точке M.
Найдите площадь треугольника ABC, если расстояние от точки M до катета BC равно 4, а  AM = 5.

Прислать комментарий     Решение

Задача 53178

Темы:   [ Подобные треугольники (прочее) ]
[ Биссектриса угла (ГМТ) ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 3+
Классы: 8,9

В прямоугольном треугольнике ABC биссектриса прямого угла B пересекает гипотенузу AC в точке M.
Найдите расстояние от точки M до катета BC, если катет AB равен 5, а катет BC равен 8.

Прислать комментарий     Решение

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 66]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .