ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]()
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Пусть AF – медиана треугольника ABC, D – середина отрезка AF, E – точка пересечения прямой CD со стороной AB. Оказалось, что BD = BF. ![]() |
Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 352]
На сторонах AB и BC треугольника ABC отложены равные отрезки AE и CF соответственно. Окружность, проходящая через точки B, C, E , и окружность, проходящая через точки A, B, F , пересекаются в точках B и D. Докажите, что BD – биссектриса угла ABC.
Пусть AF – медиана треугольника ABC, D – середина отрезка AF, E – точка пересечения прямой CD со стороной AB. Оказалось, что BD = BF.
KLMN – выпуклый четырёхугольник, в котором равны углы K и L. Серединные перпендикуляры к сторонам KN и LM пересекаются на стороне KL.
В треугольнике ABC проведена биссектриса BL. Известно, что BL = AB. На продолжении BL за точку L выбрана точка K, причём ∠BAK + ∠BAL = 180°. Докажите, что BK = BC.
В выпуклом четырёхугольнике ABCD AB = BC. Лучи BA и CD пересекаются в точке E, а лучи AD и BC – в точке F. Известно также, что BE = BF и
Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 352] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |