ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Через точку S , лежащую вне окружности с центром O , проведены две касательные, касающиеся окружности в точках A и B , и секущая, пересекающая окружность в точках M и N . Прямые AB и SO пересекаются в точке K . Докажите, что точки M , N , K и O лежат на одной окружности.

   Решение

Задачи

Страница: << 32 33 34 35 36 37 38 >> [Всего задач: 401]      



Задача 78528

Темы:   [ Вспомогательные равные треугольники ]
[ Хорды и секущие (прочее) ]
Сложность: 3
Классы: 7,8

На отрезке AB выбрана произвольно точка C и на отрезках AB, AC и BC, как на диаметрах, построены окружности Ω1, Ω2 и Ω3. Через точку C проводится произвольная прямая, пересекающая окружность Ω1 в точках P и Q, а окружности Ω2 и Ω3 в точках R и S соответственно. Доказать, что  PR = QS.

Прислать комментарий     Решение

Задача 108675

Темы:   [ Четыре точки, лежащие на одной окружности ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Средние пропорциональные в прямоугольном треугольнике ]
Сложность: 3
Классы: 8,9

Через точку S , лежащую вне окружности с центром O , проведены две касательные, касающиеся окружности в точках A и B , и секущая, пересекающая окружность в точках M и N . Прямые AB и SO пересекаются в точке K . Докажите, что точки M , N , K и O лежат на одной окружности.
Прислать комментарий     Решение


Задача 111479

Темы:   [ Длины сторон, высот, медиан и биссектрис ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
Сложность: 3
Классы: 8,9

В треугольнике ABC известно, что AB=a , BC=b . Продолжение медианы BD пересекается с описанной около ABC окружностью в точке E , причём = . Найдите AC .
Прислать комментарий     Решение


Задача 111601

Темы:   [ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Диаметр, хорды и секущие ]
[ Биссектриса угла (ГМТ) ]
Сложность: 3
Классы: 8,9

В окружности с центром O проведены три равные хорды AB, CD и PQ (см. рисунок). Докажите, что угол MOK равен половине угла BLD.

Прислать комментарий     Решение

Задача 52343

Темы:   [ Признаки и свойства касательной ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
Сложность: 3
Классы: 8,9

В большей из двух концентрических окружностей проведена хорда, равная 32 и касающаяся меньшей окружности. Найдите радиус каждой из окружностей, если ширина образовавшегося кольца равна 8.

Прислать комментарий     Решение


Страница: << 32 33 34 35 36 37 38 >> [Всего задач: 401]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .